Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(12): 2457-2473, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655136

RESUMO

Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affects growth of cells. Here, we have studied growth of Escherichia coli MG1655, a wild-type laboratory strain of E. coli K-12, in deuterated glycerol minimal medium. The growth rate and final biomass in deuterated medium is substantially reduced compared to cells grown in ordinary medium. By using a multi-generation adaptive laboratory evolution-based approach, we have isolated strains that show increased fitness in deuterium-based growth media. Whole-genome sequencing identified the genomic changes in the obtained strains and show that there are multiple routes to genetic adaptation to growth in deuterium-based media. By screening a collection of single-gene knockouts of nonessential genes, no specific gene was found to be essential for growth in deuterated minimal medium. Deuteration of proteins is of importance for NMR spectroscopy, neutron protein crystallography, neutron reflectometry, and small angle neutron scattering. The laboratory evolved strains, with substantially improved growth rate, were adapted for recombinant protein production by T7 RNA polymerase overexpression systems and shown to be suitable for efficient production of perdeuterated soluble and membrane proteins for structural biology applications.


Assuntos
Adaptação Fisiológica/genética , Deutério/metabolismo , Escherichia coli K12/metabolismo , Marcação por Isótopo/métodos , Nêutrons , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Glicerol/metabolismo , Glicerol/farmacologia , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Mutação , Difração de Nêutrons , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Seleção Genética , Fator sigma/genética , Fator sigma/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequenciamento Completo do Genoma
2.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575837

RESUMO

Labeling of proteins with deuterium (2H) is often necessary for structural biology techniques, such as neutron crystallography, NMR spectroscopy, and small-angle neutron scattering. Perdeuteration in which all protium (1H) atoms are replaced by deuterium is a costly process. Typically, expression hosts are grown in a defined medium with heavy water as the solvent, which is supplemented with a deuterated carbon source. Escherichia coli, which is the most widely used host for recombinant protein production, can utilize several compounds as a carbon source. Glycerol-d8 is often used as a carbon source for deuterium labelling due to its lower cost compered to glucose-d7. In order to expand available options for recombinant protein deuteration, we investigated the possibility of producing a deuterated carbon source in-house. E. coli can utilize pyruvate as a carbon source and pyruvate-d3 can be made by a relatively simple procedure. To circumvent the very poor growth of E. coli in minimal media with pyruvate as sole carbon source, adaptive laboratory evolution for strain improvement was applied. E. coli strains with enhanced growth in minimal pyruvate medium was subjected to whole genome sequencing and the genetic changes were revealed. One of the evolved strains was adapted for the widely used T7 RNA polymerase overexpression systems. Using the improved strain E. coli DAP1(DE3) and in-house produced deuterated carbon source (pyruvic acid-d4 and sodium pyruvate-d3), we produce deuterated (>90%) triose-phosphate isomerase, at quantities sufficient enough for large volume crystal production and subsequent analysis by neutron crystallography.


Assuntos
Deutério/metabolismo , Escherichia coli/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/metabolismo , Sódio/metabolismo , Adaptação Fisiológica , Meios de Cultura , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Mutação , Proteínas Recombinantes/genética
3.
IUCrJ ; 8(Pt 4): 633-643, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258011

RESUMO

Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxy-acetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of Leishmania mexicana TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA-TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations.

4.
Sci Rep ; 9(1): 17694, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776414

RESUMO

Deuterium isotope labelling is important for structural biology methods such as neutron protein crystallography, nuclear magnetic resonance and small angle neutron scattering studies of proteins. Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affect growth of cells. The generation time for Escherichia coli K-12 in deuterated medium is substantially increased compared to cells grown in hydrogenated (protiated) medium. By using a mutagenesis plasmid based approach we have isolated an E. coli strain derived from E. coli K-12 substrain MG1655 that show increased fitness in deuterium based growth media, without general adaptation to media components. By whole-genome sequencing we identified the genomic changes in the obtained strain and show that it can be used for recombinant production of perdeuterated proteins in amounts typically needed for structural biology studies.


Assuntos
Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Deutério/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/genética , Marcação por Isótopo/métodos , Proteínas Recombinantes/metabolismo , Sequência de Bases , Escherichia coli K12/metabolismo , Genoma Bacteriano , Mutagênese , Plasmídeos/genética , Sequenciamento Completo do Genoma
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 260-269, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950827

RESUMO

Triose-phosphate isomerase (TIM) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Two catalytic mechanisms have been proposed based on two reaction-intermediate analogues, 2-phosphoglycolate (2PG) and phosphoglycolohydroxamate (PGH), that have been used as mimics of the cis-enediol(ate) intermediate in several studies of TIM. The protonation states that are critical for the mechanistic interpretation of these structures are generally not visible in the X-ray structures. To resolve these questions, it is necessary to determine the hydrogen positions using neutron crystallography. Neutron crystallography requires large crystals and benefits from replacing all hydrogens with deuterium. Leishmania mexicana triose-phosphate isomerase was therefore perdeuterated and large crystals with 2PG and PGH were produced. Neutron diffraction data collected from two crystals with different volumes highlighted the importance of crystal volume, as smaller crystals required longer exposures and resulted in overall worse statistics.


Assuntos
Deutério/química , Leishmania mexicana/enzimologia , Proteínas Mutantes/química , Difração de Nêutrons , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...